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INTRODUCTION 

THE INVERSE heat conduction problem (IHCP) is the 
determination of surface heat flux from transient, measured 
temperatures inside solids. One of the important parameters 
involved in IHCP is the dimensionless time step based on the 
depth of the sensor below the heated surface. Using Beck’s 
method [1], this note presents a comparison of the sensitivity 
to measurement errors for different sensor locations when the 
dimensionless time step based on sensor depth is the same. 
Both cases of identical dimensional and identical dimension- 
less variances in the temperature measurement are considered. 

ANALYSIS 

The Beck procedure is to determine at each time step the 
heat flux that minimizes the least-square error between the 
calculated and measured temperatures. The least-square 
function is : 

F, = i (Tf+j_ yM+j)z (1) 
j=t 

where Tf+j and Y”+j are respectively the calculated and 
measured temperatures at time (M+j)At. The number of 
future time temperatures used in the minimization is r. A 
solution for the unknown heat flux given by Blackwell [2,3] is : 

with 

KJE = & 
i 

i (&)‘. (3) 
,=1 

The symbol I@’ represents the decay of the temperature at x 
= E when the heat flux is set to zero for the r future time steps 
(q”+’ = q”+* = ... = qMf’ = 0). & is the temperature 
response at x = E of the body initially at zero temperature and 
subjected to a unit step in heat flux. The 4s are called sensitivity 
coefficients and the KS are called gain coefficients [3]. For a 
semi-infinite body or for a flat plate at the early stage of the 
transient, the expression of the sensitivity coefficients [4] is : 

4(x, t) = $ {2$& e-x’/4sr - x erfc (x/Z*)} (4) 

which can be written as : 

d(x,t)=x i -j-,Fe-L”‘+-erfc(l/2JF)]}=x~(t+) 
u 

(5) 

where t+ = at/x’ is the Fourier number. 
The measured temperatures can be considered as the exact 

temperatures plus random errors : 

Y’ = T’+Ei (6) 

qf+’ = i Kb(yM+j_$fJ) 
Substituting equation (6) into (2) gives: 

(2) 
j=I 

&f+t = $f+l+qf+I (74 

NOMENCLATURE 

erfc complementary error function X abscissa 
E depth of thermocouple below heated surface Y measured temnerature. 

r 
T 

Th 

T 
t 
t+ 

location of the first gensor 
location of the second sensor 
least-squares function 
gain coefficient defined by equation (3) 
thermal conductivity 
thickness of the slab 
flux at time j* At 
nominal value of the heat flux 
heat flux defined by equation (7b) 
error in the heat flux defined by equation (7~) 
number of future temperatures 
temperature 
computed temperature at time j * At and depth E 
below the heated surface 
exact measured temperature 
time 
dimensionless time, at/x* 

Greek symbols 
At dimensional time step 
Ati dimensionless time step, aAt/E2 
E random error 

z 

thermal diffusivity 
sensitivity coefficient at x = t and time t, = j- At, 
equation (5). 

Subscripts 
1 relative to the first sensor 
2 relative to the second sensor 
L relative to the sensor located at the insulated 

surface. 

Superscripts 

j relative to the time 
+ dimensionless value. 
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where by: 

42” = c KJ#f’. (7c) 
j=l 

&‘+‘istheexact heatfluxifJIFj’ 1s exact. It is true for example 
at the first time step. However, this note focuses on the second 
term 4:” which is the error in the surface heat flux 
introduced at this particular time step by the random errors 
P+j(j = 1,2 ,_.,, r). Thus QFf’ represents the sensitivity to 
measurement errors. The purpose of this note is to compare 
this error Qf*’ for different sensor locations when the 
dimensionless time steps Ati based on the sensor depth are 
equals. Four cases are studied. 

The first case corresponds to two sensors located within the 
solid at E, and E2 (E, < E, < L) and the dimensional 
variances in the measurement are the same which is usually 
true for a given experiment. The ratio of the sensitivity 
coefficients of the two sensors is expressed using equation (5) 
and At:, = At& by : 

d, E, 
4’,, =E, i= l,Z...,r. 

Substituting in equation (3~) gives: 

Kit & 
_ = - 
fG2 El 

j = 1,2,. . , r. 

The ratio qE, /qE2 w”+l lMff is found using equation (7~) and the 
substitution of (9) yields: 

For E, = 0.25 and E, = 0.5, equation (10) expresses that the 
sensitivity to measurement errors is twice that for the sensor 
closest to the heated surface. It might be surprising but one 
must keep in mind that in that case the dimensional time step 
At,, for this sensor is four times smaller than the one at the 
other sensor. 

The second case considered is a finite plate perfectly 
insulated at the back face x = L. This case is often used to 
study inverse methods and the sensor can be located either 
within the solid or at the insulated surface. The dimensionless 
time steps Ati are still equal and it will be first assumed that the 
dimensionless random errors Ej+ are identical for the two 
sensors. This case is of interest for the comparison of inverse 
methods because the same dimensionless measurement errors 
can be used in every paper. The dimensionless error is defined 

so 

E’+ =kEi. 
qox 

$=4ox&.i+, 
k 

(11) 

(12) 

The ratio 4f” over afl” is found using equation (7~) and 
substituting equation (12) gives : 

When At: = At:, the dimensionless sensitivity coefficients for 
the sensor within the solid (4,‘) and for the sensor at the 
insulated surface (4,‘) are related at the early stage of the 
transient [4] by : 

(P’L’ = 2tiE+ j = 1,2,...,r 

using the definition of $J’ : 

(14) 

+y 
x 

x 

it gives : 

@=2: 
ti 

j=l,2 ,..., r. 

(15) 

(16) 

Substitution of equations (3) and (16) in (13) yields: 

c= 2, 
4P” 

(17) 

Thus for the same dimensionless time steps-both based on 
depth of the sensor-and the same dimensionless random 
errors in the measurement, the error in the surface heat flux for 
a sensor at any interior location is twice the error for the sensor 
at the insulated surface. 

In the third case, it is assumed that the dimensional random 
errors are the same while the second sensor is still at the 
insulated surface. Thus equation (16) is used instead of 
equation (8) to get equations similar to (9) and (lo), and it 
yields : 

w&f+1 
qE L 
---=2-_. -M+l E 4L 

(18) 

In the fourth case, the dimensionless random errors are the 
same and the second sensor is within the solid. Then equation 
(13) with E = E, and L = E, is valid. Substitution ofequation 

Table 1. Comparison of the sensitivity to measurement errors for different sensor locations for a flat 
plate insulated at the back face. The dimensionless time steps based on depth of the sensor are identical 

and are small 

Location of the Location of the Relation between Relation between 

first sensor second sensor the random error in the error in the 

Case E, ME, > E,) the measurements heat flux 

4 within solid within solid same dimensionless errors GE, = 4, 

1 within solid within solid same dimensional errors 

2 within solid insulated face same dimensionless errors (?E, = 2&z 

3 within solid insulated face same dimensional errors 
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(9) gives : 
“M+l 
qEl 
;M+1 = 1. 
qE2 

(19) 

The relations between the errors in the surface heat flux are 
reported in Table 1 for the four cases. 

EXAMPLE 

Consider a flat plateinsulated on one side. For simplicity the 
parameters L, c(, k and r are set equal to unity. The error in the 
surface heat flux is compared for three sensors located at E 
= 0.25, E = 0.5 and at the back face L = 1. Setting r = 1 in 
equations (3) and (7~) gives the expression of the error 

a,“” zz K;E”+’ zz &“+l/#;. (20) 

In order to have the same dimensionless time step based on 
sensor depth, the dimensional time step for the three sensors 
must vary. The dimensional time steps, the sensitivity 
coefficients and the errors are reported in Table 2 when 
At; = 0.16. 

For the two sensors within the solid the error is twice that for 
the sensor closest to the heated surface, but, it should be noted 
that the dimensional time step is four times smaller for this 
sensor. Table 2 also shows that the sensitivity to measurement 

Table 2. Error in the surface heat flux due to a single 
measurement error .?+I for different sensor locations 

(At,+ = 0.16) 

Sensor 
location 

Dimensional Sensitivity Error 
time step coefficient $A q”+l 

Within solid 0.01 0.00438 228 E~+I 

E = 0.25 

Within solid 0.04 0.00876 114 EM+1 
E = 0.5 

Insulated face 0.16 0.03504 28.5 E~+I 
E=l 

errors is four times larger at the center of the plate than at the 
insulated face, but again, the dimensional time step is four 
times smaller for this sensor. 

SUMMARY 

It has been shown that two inverse heat conduction 
problems are not always identical despite the dimensionless 
time steps based on the distance from the heated surface to the 
sensor are the same. First, the sensitivity to measurement 
errors is twice for an interior sensor than for a sensor at the 
insulated surface even if both the dimensionless time steps 
based on sensor depth and the dimensionless measurement 
errors are equals. Now, considering an experiment where the 
dimensional random measurement errors are more likely to be 
the same for every sensor, the sensitivity to measurement 
errors is inversely proportional to the sensor depth for a 
constant dimensionless time step. But it is important to point 
out that the dimensional time steps are proportional to the 
square of the sensor depth. Thus the closer the sensor, the 
smaller the dimensional time step and then the largest 
the sensitivity to measurement errors. However, the best 
sensor location for a given dimensional time step and a given 
dimensional variance in the temperature measurements is 
near the heated surface. The results presented herein apply to 
all IHCP algorithms and are of interest for the comparison of 
IHCP methods. They are only valid when small dimensionless 
time steps are used which usually is required. 
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